
Appendix A

Data Assimilation

A.1 Derivation of the Euler-Lagrange Equations

This Section outlines the derivation of the Euler-Lagrange equations presented in Sec-
tion 2.1.3. In order to find the minimum of the objective function, we perform a first
variation on J .

δJ =
δJ

δX
δX +

δJ

δY
δY +

δJ

δν
δν +

δJ

δω
δω +

∂J

∂α
δα+

∂J

∂β
δβ +

δJ

δµ
δµ+

δJ

δλ
δλ +

∂J

∂λ0
δλ0 (A.1)

At the minimum we have δJ = 0. Since all variations are considered arbitrary and inde-
pendent, each of the individual partial derivatives of the objective function must vanish.
Obviously, variation of (2.7) with respect to the adjoint parameters µ, λ and λ0 simply

returns the state equation, i.e. the forward equation (2.8) and its initial condition (2.8b) in
the set of Euler-Lagrange equations.
From the variation of (2.7) with respect to the parameters α and β, we get2(α− α)TC−1α − 2

tf∫
0

µT
∂φ

∂α
dt− 2

tf∫
0

λT
∂ϕ

∂α
dt

 δα = 0
and [

2(β − β)TC−1β − 2λ
T
0

∂Y0
∂β

]
δβ = 0

Using λ0 = λ|t=0 (see below), these are the parameter update equations (2.10).
Next, variation of (2.7) with respect to ω yields

2

tf∫
0

 tf∫
0

ω(t′)TC−1ω (t
′, t′′)dt′ − λ(t′′)TDω(t

′′)Pω

 δω(t′′)dt′′ = 0
and therefore

tf∫
0

ω(t′)TC−1ω (t
′, t′′)dt′ = λ(t′′)TDω(t

′′)Pω
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Postmultiplying by Cω(t
′′, t), integrating over t′′, and using (2.6), we find

ω(t)T =

tf∫
0

λ(t′′)TDω(t
′′)PωCω(t

′′, t)dt′′

which is the process noise update (2.11a). Similarly, we get the update equation for ν.
Variation with respect to X yields

−2 (Z −M [X,Y ])T C−1v
∂M [X,Y ]

∂X
δX − 2

tf∫
0

µT
∂φ

∂X
δXdt − 2

tf∫
0

λT
∂ϕ

∂X
δXdt = 0

In this expression, we substitute from (2.3)

∂M [X,Y ]

∂X
=

tf∫
0

[δ]
∂f(X(t), Y (t))

∂X
dt

and get the first part of the backward equation after collecting all terms under a single
integral and setting the integrand to zero.
In order to perform the variation with respect to the state Y , we start from (2.7) and

integrate by parts the term containing ∂Y
∂t .

J =(Z −M [X,Y ])T C−1v (Z −M [X,Y ])

+ (α− α)T C−1α (α− α) +
(
β − β

)T
C−1β

(
β − β

)
+

tf∫
0

tf∫
0

ν(t′)TC−1ν (t
′, t′′)ν(t′′)dt′dt′′ +

tf∫
0

tf∫
0

ω(t′)TC−1ω (t
′, t′′)ω(t′′)dt′dt′′

− 2

tf∫
0

µT (φ(X,Y ;α) +DνPνν) dt

+ 2
(
λTY

)
|t=tf − 2

(
λTY

)
|t=0 − 2

tf∫
0

(
∂λ

∂t

T

Y + λTϕ(X,Y ;α) + λTDω(Y )Pωω

)
dt

+ 2λT0 (Y |t=0 − Y0(β))

From the variation with respect to Y |t=tf we immediately get the terminal condition (2.9a)

for the backward equation. (Recall that tm ∈ (0, tf ), i.e. there are no measurements at the
final time tf ). Similarly, variation with respect to Y |t=0 yields

λ|t=0 = λ0

Finally, variation with respect to the state Y (t), t ∈ (0, tf ), yields

− 2 (Z −M [X,Y ])T C−1v
∂M [X,Y ]

∂Y
δY

− 2

tf∫
0

µT
∂φ

∂Y
δY dt− 2

tf∫
0

[
∂λ

∂t

T

+ λT
∂ϕ

∂Y
+ λT

∂[Dω(Y )Pωω]

∂Y

]
δY dt = 0
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In this expression, we substitute from (2.3)

∂M [X,Y ]

∂Y
=

tf∫
0

[δ]
∂f(X(t), Y (t))

∂Y
dt

and get the backward equation after collecting all terms under a single integral and setting
the integrand to zero.

A.2 Derivation of the Posterior Covariance Equations

This Section outlines the derivation of the posterior covariance equations of Section 2.4.
Recall that the problem at hand is nonlinear, and that the linearized posterior covariances
derived below are at best approximations of the true posterior covariances. In particular,
we treat the previous estimate as a fixed deterministic input, although strictly speaking the
previous estimate depends on the data and therefore on the measurement error.

A.2.1 Equivalence of Representers and Prior Cross-Covariances

We first prove the fact that the state representers are equal to the linearized (prior) cross-
covariances of the measurement predictions and the states.

Lk[X ′, Y ′]X ′(t) = Ξ
k(t) Lk[X ′, Y ′]Y ′(t) = Υ

k(t) (2.34)

The idea is to show that Lk[X ′, Y ′]X ′(t) and Lk[X ′, Y ′]Y ′(t) obey the same differential
equations as Ξk(t) and Υk(t), which are of course the state representer equations (2.25).
From the tangent-linear state equation (2.13) and the equation for the prior state (2.22),

we obtain an equation for the perturbation of the state X ′ ≡ X−X
η+1
and Y ′ ≡ Y −Y

η+1
.

0 =
∂φ

∂X

∣∣∣∣
η

X ′ +
∂φ

∂Y

∣∣∣∣
η

Y ′ +
∂φ

∂α

∣∣∣∣
η

α′ +DνPνν

∂Y ′

∂t
=

∂ϕ

∂X

∣∣∣∣
η

X ′ +
∂ϕ

∂Y

∣∣∣∣
η

Y ′ +
∂ϕ

∂α

∣∣∣∣
η

α′ +Dω(Y
η)Pωω +

∂[Dω(Y )Pωω]

∂Y

∣∣∣∣
η

Y ′
(A.2)

Y ′|t=0 =
∂Y0
∂β

∣∣∣∣
η

β′ (A.2a)

For the perturbations of the parameters we write α′ ≡ α− α and β′ ≡ β − β.
Next, we multiply (A.2) with the scalar Lk[X

′, Y ′] and take the expectation. We get

0 =
∂φ

∂X

∣∣∣∣
η

Lk[X ′, Y ′]X ′(t) +
∂φ

∂Y

∣∣∣∣
η

Lk[X ′, Y ′]Y ′(t) +
∂φ

∂α

∣∣∣∣
η

Lk[X ′, Y ′]α′

+ Lk[X ′, Y ′]DνPνν

∂

∂t
Lk[X ′, Y ′]Y ′(t) =

∂ϕ

∂X

∣∣∣∣
η

Lk[X ′, Y ′]X ′(t) +
∂ϕ

∂Y

∣∣∣∣
η

Lk[X ′, Y ′]Y ′(t) +
∂ϕ

∂α

∣∣∣∣
η

Lk[X ′, Y ′]α′

+ Lk[X ′, Y ′]Dω(Y η)Pωω + Lk[X ′, Y ′]
∂[Dω(Y )Pωω]

∂Y

∣∣∣∣
η

Y ′

Lk[X ′, Y ′]Y ′|t=0 =
∂Y0
∂β

∣∣∣∣
η

Lk[X ′, Y ′]β′
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Comparing these equations to the state representer equations (2.25), we see that the
fact (2.34) holds if the following four identities hold.

Lk[X ′, Y ′]α′ = Cα

tf∫
0

(
∂φ

∂α

∣∣∣∣T
η

Ωk(t′) +
∂ϕ

∂α

∣∣∣∣T
η

Λk(t′)

)
dt′ (A.3)

Lk[X ′, Y ′]DνPνν =

tf∫
0

DνPνCν(t, t
′)P Tν D

T
ν Ω

k(t′)dt′ (A.4)

Lk[X ′, Y ′]Dω(Y η)Pωω =

tf∫
0

Dω(Y
η(t))PωCω(t, t

′)P Tω [Dω(Y
η(t′))]TΛk(t′)dt′ (A.5)

Lk[X ′, Y ′]β′ = Cβ
∂Y0
∂β

∣∣∣∣T
η

Λk|t=0 (A.6)

For the proof of (A.3)–(A.6) we seek an expression of the form

Lk[X
′, Y ′] ≈ δMk[X,Y ] =

δMk

δX
δX +

δMk

δY
δY =

δMk

δν
δν +

δMk

δω
δω +

δMk

δα
δα +

δMk

δβ
δβ

To this end, we apply an adjoint technique which avoids the explicit computation of δMkδX

and δMk
δY and yields the derivatives with respect to ν, ω, α, and β directly. We first define

as an objective the function for which we need the derivatives.

J̃k =Mk[X
η+1

, Y
η+1
] + Lk[X −X

η+1
, Y − Y

η+1
] (A.7)

In order to satisfy the relation between the states X, Y and the inputs ν, ω, α, and β, we
adjoin the tangent-linear state equation (2.13) to the objective.

Jk =Mk[X
η+1

, Y
η+1
] + Lk[X −X

η+1
, Y − Y

η+1
]

+

tf∫
0

(µ̃k)T

(
φ(Xη , Y η;αη) +

∂φ

∂X

∣∣∣∣
η

(X −Xη) +
∂φ

∂Y

∣∣∣∣
η

(Y − Y η)

+
∂φ

∂α

∣∣∣∣
η

(α− αη) +DνPνν

)
dt

−

tf∫
0

(λ̃k)T

(
∂Y

∂t
− ϕ(Xη , Y η;αη)−

∂ϕ

∂X

∣∣∣∣
η

(X −Xη)−
∂ϕ

∂Y

∣∣∣∣
η

(Y − Y η)−
∂ϕ

∂α

∣∣∣∣
η

(α− αη)

−Dω(Y
η)Pωω −

∂[Dω(Y )Pωω]

∂Y

∣∣∣∣
η

(Y − Y η)

)
dt

− (λ̃k0)
T

(
Y |t=0 − Y0(β

η)−
∂Y0
∂β

∣∣∣∣
η

(β − βη)

)
(A.8)

Using partial integration we substitute

−

tf∫
0

(λ̃k)T
∂Y

∂t
dt = +

tf∫
0

∂λ̃k

∂t

T

Y dt−
(
(λ̃k)TY

)
|t=tf +

(
(λ̃k)TY

)
|t=0
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in (A.8) and then use the resulting expression to compute the first variation of Jk.

δJk =
δJk

δX
δX +

δJk

δY
δY +

δJk

δν
δν +

δJk

δω
δω +

δJk

δα
δα+

δJk

δβ
δβ (A.9)

We now choose µ̃k, λ̃k and λ̃k0 such that
δJk

δX δX ≡
δJk

δY δY ≡ 0, because then we have

δJk = δJ̃k ≡ δLk[X,Y ] = Lk[X
′, Y ′] (A.10)

First, the variation of Jk with respect to X and Y yields

δJk

δX
δX =

tf∫
0

(
δ(t − tk)

∂fk
∂X

∣∣∣∣
η

+ (µ̃k)T
∂φ

∂X

∣∣∣∣
η

+ (λ̃k)T
∂ϕ

∂X

∣∣∣∣
η

)
δXdt = 0

δJk

δY
δY =

tf∫
0

(
δ(t − tk)

∂fk
∂Y

∣∣∣∣
η

+ (µ̃k)T
∂φ

∂Y

∣∣∣∣
η

+
∂λ̃k

∂t

T

+ (λ̃k)T
∂ϕ

∂Y

∣∣∣∣
η

+(λ̃k)T
∂[Dω(Y )Pωω]

∂Y

∣∣∣∣
η

)
δY dt = 0

(A.11)

as well as λ̃k0 = λ̃k|t=0 and λ̃
k|t=tf = 0. Comparing (A.11) with the adjoint represen-

ter equations (2.24), we see that µ̃k and λ̃k obey the same equations as Ωk and Λk and
therefore µ̃k ≡ Ωk and λ̃k ≡ Λk.
The other variations of Jk yield

δJk

δν
δν =

tf∫
0

(µ̃k)TDνPνδνdt

δJk

δω
δω =

tf∫
0

(λ̃k)TDω(Y
η)Pωδωdt

δJk

δα
δα =

tf∫
0

(
(µ̃k)T

∂φ

∂α

∣∣∣∣
η

+ (λ̃k)T
∂ϕ

∂α

∣∣∣∣
η

)
δαdt

δJk

δβ
δβ = (λ̃k0)

T ∂Y0
∂β

∣∣∣∣
η

δβ

Using µ̃k ≡ Ωk, λ̃k ≡ Λk and the fact that Lk[X
′, Y ′] is a scalar (for example δJk

δω δω =

δωT δJ
k

δω

T
), we can now write Lk[X

′, Y ′] according to (A.9) and (A.10) as

Lk[X
′, Y ′] =

tf∫
0

δνTP Tν D
T
ν Ω

kdt+

tf∫
0

δωTP Tω [Dω(Y
η)]TΛkdt

+

tf∫
0

δαT

(
∂φ

∂α

∣∣∣∣T
η

Ωk +
∂ϕ

∂α

∣∣∣∣T
η

Λk

)
dt+ δβT

∂Y0
∂β

∣∣∣∣T
η

Λk|t=0
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If we left-multiply this expression with δα ≡ α′, take the expectation, and keep in mind
that the cross-covariances (2.4a) between α and ν, ω or β vanish, we find (A.3). Similarly,
multiplication with ν, ω, and β′ yield (A.5), (A.4), and (A.6). This completes our proof of
(2.34).

A.2.2 Derivation of the Posterior Covariance Equations

Before we start with the derivation of the posterior covariances, we prove the following
result. Whereas the representer functions are deterministic, the representer coefficients are
random variables. Their covariance is

bkbl = [U
−1]kl (A.12)

where we defined earlier

U ≡ Cv +R and [R]kl ≡ Lk[Ξ
l,Υl] (2.27)

This result is easily derived from (2.26). We have

bkbl =
∑
rs

[U−1]kr(Zr −Mr[Xη , Y η]− Lr[X
η+1
−Xη , Y

η+1
− Y η])·

·(Zs −Ms[Xη , Y η]− Ls[X
η+1
−Xη, Y

η+1
− Y η])[U−1]sl

=
∑
rs

[U−1]kr(vr + Lr[X −X
η+1

, Y − Y
η+1
])(vs + Ls[X −X

η+1
, Y − Y

η+1
])[U−1]sl

=
∑
rs

[U−1]kr

(
[Cv]rs + Lr[X ′, Y ′]Ls[X ′, Y ′]

)
[U−1]sl

With Lr[X ′, Y ′]Ls[X ′, Y ′] = Lr[Ls[X ′, Y ′]X ′, Ls[X ′, Y ′]Y ′] = Lr[Ξ
s,Υs] = Rrs, the desired

result follows immediately.

We are now finally ready to derive the equations (2.35), (2.36), and (2.37) for the
posterior covariances. Using the previous results, the derivations are straightforward. First,
we expand the expression for the posterior state covariance CỸ Ỹ .

[CỸ Ỹ (t1, t2)]ij ≡(Yi(t1)− Y
η+1
i (t1))(Yj(t2)− Y

η+1
j (t2))

=
(
Yi(t1)− Y

η+1
i (t1)−

∑
k

bkΥ
k
i (t1)

)(
Yj(t2)− Y

η+1
j (t2)−

∑
l

blΥ
l
j(t2)

)
=[CY ′Y ′(t1, t2)]ij −

∑
k

Υki (t1)bk(Yj(t2)− Y
η+1
j (t2))

−
∑
l

Υlj(t2)bl(Yi(t1)− Y
η+1
i (t1)) +

∑
kl

Υki (t1)bkblΥ
l
j(t2)
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Using (A.12) and

bk(Yj(t2)− Y
η+1
j (t2))

=
∑
r

[U−1]kr(Zr −Mr[Xη , Y η]− Lr[X
η+1
−Xη ,X

η+1
−Xη])(Yj(t2)− Y

η+1
j (t2))

=
∑
r

[U−1]kr(vr + Lr[X −X
η+1

, Y − Y
η+1
])(Yj(t2)− Y

η+1
j (t2))

=
∑
r

[U−1]krLr[X ′, Y ′]Y
′
j (t2)

=
∑
r

[U−1]krΥ
r
j(t2)

we immediately get the corresponding equation in (2.35). The other posterior state covari-
ance equations of can be derived analogously.

In order to derive the posterior covariance of the measurement predictions (2.36), we
expand

[Cṽ]mn ≡ Lm[X −Xη+1, Y − Y η+1]Ln[X −Xη+1, Y − Y η+1]

=
(
Lm[X −X

η+1
, Y − Y

η+1
]−
∑
k

bkLm[Ξk,Υk]
)
·

·
(
Ln[X −X

η+1
, Y − Y

η+1
]−
∑
l

blLn[Ξl,Υl]
)

= Lm[X ′, Y ′]Ln[X ′, Y ′]−
∑
k

Lm[Ξ
k,Υk]bkLn[X −X

η+1
, Y − Y

η+1
]

−
∑
l

Ln[Ξ
l,Υl]blLm[X −X

η+1
, Y − Y

η+1
] +
∑
kl

Lm[Ξ
k,Υk]bkblLn[Ξ

l,Υl]

With Lm[Ξ
k,Υk] = Rmk and

bkLn[X −X
η+1

, Y − Y
η+1
]

=
∑
l

[U−1]kl(Zl −Ml[Xη , Y η]− Ll[X
η+1
−Xη, Y

η+1
− Y η])Ln[X −X

η+1
, Y − Y

η+1
]

=
∑
l

[U−1]kl(vl + Ll[X −X
η+1

, Y − Y
η+1
])Ln[X −X

η+1
, Y − Y

η+1
]

=
∑
l

[U−1]klLl[X ′, Y ′]Ln[X ′, Y ′]

=
∑
l

[U−1]klRln

we immediately obtain (2.36).
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Finally, for the covariance of the posterior data residuals (2.37) we expand

[Cv̂]mn ≡(Zm −Mm[Xη , Y η]− Lm[Xη+1 −Xη, Y η+1 − Y η])·

·(Zn −Mn[Xη , Y η]− Ln[Xη+1 −Xη , Y η+1 − Y η])

=(vm + Lm[X −Xη+1, Y − Y η+1])(vn + Ln[X −Xη+1, Y − Y η+1])

=
(
vm + Lm[X −X

η+1
, Y − Y

η+1
]−
∑
k

bkLm[Ξk,Υk]
)
·

·
(
vn + Ln[X −X

η+1
, Y − Y

η+1
]−
∑
l

blLn[Ξl,Υl]
)

=vmvn −
∑
l

Ln[Ξ
l,Υl]blvm −

∑
k

Lm[Ξ
k,Υk]bkvn + [Cṽ]mn

Using Ln[Ξ
l,Υl] = Rnl and

blvm =
∑
r

[U−1]lr(Zr −Mr[Xη , Y η]− Lr[X
η+1
−Xη , Y

η+1
− Y η])vm

=
∑
r

[U−1]lr(vr + Lr[X −X
η+1

, Y − Y
η+1
])vm

=
∑
r

[U−1]lr[Cv ]rm

we get

[Cv̂]mn = [Cv]mn −
∑
lr

Rnl[U
−1]lr[Cv]rm −

∑
ks

Rmk[U
−1]ks[Cv]sn + [Cṽ]mn

= [Cv]mn − [RU
−1Cv]nm − [RU

−1Cv]mn + [Cṽ]mn

which is obviously (2.37).
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Appendix B

Land Surface Model

B.1 List of Symbols

Tables B.1 to B.8 provide a list of all symbols used in the land surface model. The last
column generally indicates in which spatial dimensions the variables or parameters vary
and whether they are time-dependent. First, a list of the state and observation variables is
shown in Table B.1. The three state variables for soil moisture can be used interchangeably.
They are connected through the Clapp-Hornberger relations (3.4). The soil moisture and
temperature states and the interception water are governed by ODE’s, therefore initial
conditions must be specified.
Next, Table B.2 lists the meteorologic inputs to the model. Tables B.3 and B.4 compile

all the time-dependent variables and parameters. The functional dependence is indicated.
Note that empirical and physical constants are not listed in this functional dependence.
Tables B.5 and B.6 list the time-independent parameters, most of which must be specified
as model inputs. Table B.7 contains all the scalar empirical constants with their values or
appropriate references. Finally, Table B.8 shows all the physical constants in the model.
Those numbers are fixed and never used for calibration.
Recall the notational convention to label most of the empirical constants in the various

parameterizations with κ for scalar constants and with β for distributed parameters (which
for example depend on texture or vegetation). The empirical parameters are superscripted
with the variable which is being parameterized and subscripted with a number in case more
than one empirical constant is needed.
Moreover, the subscripts r, a, c, g refer to reference (or screen) height, air (within the

canopy), canopy (plant material), and ground, respectively. Note that all variables at screen
height are inputs that are directly measured or derived from meteorologic observations. The
subscripts s and l are used for shortwave and longwave, s and u are used for saturated and
unsaturated, depending on context. The symbol f always denotes a fraction varying from
0 to 1.
Lastly, in our convention the matric head ψg is negative for unsaturated conditions. The

vertical coordinate z is positive upward, and the numbering of the layers increases upward.
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Symbol Units Description Dimension

Wg [−] soil wetness/saturation x, y, z, t

θg [m3/m3] volumetric soil moisture content
ψg [m] matric head

Tg [K] soil surface temperature x, y, t

Wc [m] canopy interception water x, y, t

Tc [K] canopy temperature x, y, t

ea [mb] canopy air vapor pressure x, y, t

Ta [K] canopy air temperature x, y, t

TB [K] radiobrightness temperature x, y, t

Table B.1: State variables of the land surface model.

Symbol Units Description Dimension

Pr [m/s] precipitation at ref. height x, y, t

Rrs [W/m2] incoming shortw. radiation at ref. height x, y, t

Tr [K] atmospheric temperature at ref. height x, y, t

er [mb] vapor pressure at ref. height x, y, t

ur [m/s] wind speed at ref. height x, y, t

Td [K] depth average soil temperature x, y, (t)

Table B.2: Meteorologic inputs. The depth average soil temperature changes on a seasonal
time-scale only.
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Sym. Units Description Dependency Dim.

Pt [m/s] throughfall rate of precipitation Pt(Pr, Pi,Dc, fc) x, y, t

Pi [m/s] interception rate of precipitation Pi(Pr,Wc,W
max
c ) x, y, t

Dc [m/s] dripping rate from interception storage Dc(Wc, t
drip
c ) x, y, t

Sg [1/s] root sink term for transp. loss Sg(E
pot
ct , χg(Wg)) x, y, z, t

Gg [W/m2] ground heat flux Gg(R
net
gs , R

net
gl , Eg, Hg) x, y, t

Rrl [W/m2] incoming longw. radiation at ref. height Rrl(Tr, εr) x, y, t

Rnetgs [W/m2] net shortw. radiation at ground surface Rnetgs (Rrs, ag, fc) x, y, t

Rnetgl [W/m2] net longw. radiation at ground surface Rnetgl (Rrl, Tg, Tc, εg , εc, fc) x, y, t

Rnetcs [W/m2] net shortw. radiation at canopy Rnetcs (Rrs, ac, fc) x, y, t

Rnetcl [W/m2] net longw. radiation at canopy Rnetcl (Rrl, Tg, Tc, εg , εc, fc) x, y, t

ag [−] ground surface albedo ag(Wg, θs) x, y, t

εg [−] longw. soil surface emissivity εg(Wg) x, y, t

εr [−] longw. atmospheric emissivity εr(er) x, y, t

Ea [kg/m2/s] evapotransp. rate to atmosphere Ea(ea, er, ra) x, y, t

Eg [kg/m2/s] ground surface evap. rate Eg(es(Tg), ea, rg, rd, fc) x, y, t

Ece [kg/m2/s] (wet) canopy evap. rate Ece(es(Tc), ea, rc,LSAI, fc, fce) x, y, t

Epotct [kg/m2/s] potential (dry) canopy transp. rate Epotct (es(Tc), ea, rc, rs,LAI, fc, fce) x, y, t

Ect [kg/m2/s] actual (dry) canopy transp. rate Ect(E
pot
ct , χg(Wg)) x, y, t

Ha [W/m2] sensible heat flux to atmosphere Ha(Tr, Ta, ra) x, y, t

Hg [W/m2] sensible heat flux at ground surface Hg(Tg, Ta, rd, fc) x, y, t

Hc [W/m2] sensible heat flux from canopy Hc(Tc, Ta, rc,LSAI, fc) x, y, t

es [mb] saturation vapor pressure es(T ) x, y, t

uc [m/s] wind speed at canopy height uc(ur, zr, z0, dc, hc) x, y, t

u∗ [m/s] friction velocity u∗(ur, zr, z0, dc) x, y, t

ra [s/m] atmospheric resistance ra(ur, zr, z0, dc) x, y, t

rc [s/m] bulk canopy resistance rc(uc) x, y, t

rd [s/m] aerodynamic resistance within canopy rd(uc) x, y, t

rg [s/m] surface resistance of bare soil rg(Wg, θs) x, y, t

rs [s/m] stomatal resistance rs(r
min
s , χc(Rrs)) x, y, t

Cg [J/m3/K] vol. heat capacity of wet top soil layer Cg(ρgb, cg,Wg, θs) x, y, t

λg [W/m/K] thermal conductivity of wet top soil layer λg(Wg, θs) x, y, t

qt [m/s] moisture flux b.c. at top qt(Pt, Eg) x, y, t

qb [m/s] moisture flux b.c. at bottom q(Ku) x, y, t

Ku [m/s] unsaturated hydraulic conductivity Ku(Ks,Wg) x, y, z, t

fce [−] wet canopy fraction (for canopy evap.) fce(Wc,W
max
c ) x, y, t

χg [−] stress function for water-limited transp. χg(Wg, ψ
wilt, fR) x, y, z, t

χc [−] solar radiation influence on transp. χc(Rrs) x, y, t

Table B.3: Forcing variables and time-dependent parameters for the land surface model.
Note that we assume the soil thermal diffusivity KT to be constant in time (Section 3.1.7).
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Symbol Units Description Dependency Dim.

kg [−] microw. dielectric constant of wet soil kg(Wg, θs, kw, kgd, fS , fC) x, y, t

kw [−] microw. dielectric constant of water kw(kw0, kw∞, νr, τw) x, y, t

kw0 [−] static dielectric constant of water kw0(Tg) x, y, t

τw [s] relaxation time of water τw(Tg) x, y, t

εgp [−] rough surface microw. emissivity for polariz. p εgp(kg, φr) x, y, t

εsmoothgp [−] smooth surface microw. emissivity for polariz. p εsmoothgp (kg, φr) x, y, t

T effg [K] eff. soil temp. for microw. emission T effg (Tg, kg) x, y, t

φg [rad] in-soil propagation angle φg(kg, φr) x, y, t

zgrad [m] gradient RT effective depth zgrad(αe, φg) x, y, t

αe [1/m] microw. attenuation coefficient αe(kg, νr) x, y, t

Table B.4: Time-dependent variables and parameters for the Radiative Transfer model.
Note that φg, zgrad, and αe are part of the Gradient RT approximation and not used.
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Symbol Units Description/Value Model Input ? Dim.

δg [m] depth of surface temp. layer yes -

∆i [m] depth of finite difference soil moisture layer i yes z

∆̄i [m] depth of layer “around” soil moisture node i ∆̄(∆) z

θs [m3/m3] porosity yes x, y, z

Ks [m/s] saturated hydraulic conductivity yes x, y, z

ψCH [m] [Clapp and Hornberger, 1978] yes x, y, z

BCH [−] [Clapp and Hornberger, 1978] yes x, y, z

W rg [−] surface resistance param. (0.25 . . . 0.6) yes x, y

rmaxg [s/m] surface resistance param. (3000 . . . 7000) yes x, y

βrg [−] surface resistance param. βrg (W rg , rmaxg ) x, y

KT [m2/s] thermal diffusivity of soil surface layer yes x, y

dg [m] damping depth of temp. forcing dg(KT ) x, y

αg [−] param. of force-restore approx. αg(dg, δg) x, y

Γg [1/s] coefficient in force-restore approx. Γg(αg) x, y

Γ′g [s/m] coefficient in force-restore approx. Γ′g(KT ) x, y

ρgb [kg/m3] bulk density of (dry) soil in layer δg ρgb(θs, ρg) x, y

cg [J/kg/K] specific heat of dry soil in layer δg yes x, y

zr [m] reference (or screen) height yes -

hc [m] vegetation height (also for bare soil z0) yes x, y, (t)

dc [m] zero plane displacement height dc(hc) x, y, (t)

z0 [m] roughness length z0(h) x, y, (t)

βrc [
√
s/m] [Sellers and Dorman, 1987] yes x, y, (t)

βrd [−] [Sellers and Dorman, 1987] yes x, y, (t)

rmins [s/m] minimum stomatal resistance yes x, y, (t)

ac [−] shortw. canopy albedo yes x, y, (t)

εc [−] longw. canopy emissivity yes x, y, (t)

Wmax
c [m] max intercepted water Wmax

c (LSAI) x, y, (t)

tdripc [s] dripping time for canopy interception storage yes x, y, (t)

fc [−] area fraction shaded by vegetation canopy yes x, y, (t)

ψwilt [m] wilting point yes x, y, (t)

dR [m] typical rooting depth yes x, y, (t)

ρR [1/m] root density distribution ρR(dR) x, y, z, (t)

fR [−] root distribution factor fR(dR) x, y, z, (t)

LAI [−] (green) leaf area index yes x, y, (t)

SAI [−] stem (and dead leaf) area index yes x, y, (t)

LSAI [−] leaf and stem area index LSAI( LAI, SAI) x, y, (t)

β
λg
1 [W/m/K] −0.197 (clay), 0.243 (loam), 0.228 (sand) (yes) x, y

β
λg
2 [W/m/K] −0.962 (clay), 0.393 (loam), −2.406 (sand) (yes) x, y

β
λg
3 [W/m/K] 2.521 (clay), 1.534 (loam), 4.909 (sand) (yes) x, y

Table B.5: Time-independent parameters for the land surface model. Note that we assume

the soil thermal diffusivity KT to be a constant in time (Section 3.1.7), that is the β
λg
i are

not used. Note also that vegetation parameters are time-dependent on the time-scale of
plant growth, which is indicated by (t).
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Symbol Units Description Model Input ? Dim.

νr [Hz] microw. observation frequency yes -

φr [rad] (in-air) look-angle from nadir at ref. height yes -

fS [−] sand fraction in layer δg yes x, y

fC [−] clay fraction in layer δg yes x, y

βkg [−] Dobson dielectric mixing model param. βkg (fS, fC) x, y

βεg [−] surface roughness param. [Choudhury et al., 1979] yes x, y

Wv [kg/m2] vegetation water content yes x, y, (t)

βδc [m2/kg] “vegetation b param.” [Jackson and Schmugge, 1991] yes x, y, (t)

δc [−] canopy optical depth δc(Wv, φr) x, y, (t)

αc [−] canopy microwave attenuation αc(δc) x, y, (t)

zgrey [m] grey body RT param. yes -

Table B.6: Time-independent parameters for the Radiative Transfer model. Note that veg-
etation parameters are time-dependent on the time-scale of plant growth, which is indicated
by (t).

Symbol Value Units

κ
ag
1 0.25 [−]
κ
ag
2 0.125 [−]

κεr1 0.74 [−]
κεr2 0.0049 [−]

κ
εg
1 0.9 [−]
κ
εg
2 0.18 [−]

κrg 10 [s/m]

κ
αg
1 0.943 [−]
κ
αg
2 0.223 [−]
κ
αg
3 1.68 · 10−2 [−]
κ
αg
4 −5.27 · 10−3 [−]

κdc 0.63 [−]
κz0 0.13 [−]

κWc 10−4 . . . 10−3 [m]

κχc1 50 . . . 100 [−]
κχc2 100 . . . 200 [W/m2]

κfce 2/3 [−]

κ
kg
1 0.65 [−]

κ
kg
2 1.09 [−]

κ
kg
3 0.11 [−]

κ
kg
4 -0.18 [−]

κkw01 88.045 [−]

κkw02 −0.4147 [1/K]

κkw03 6.295 · 10−4 [1/K2]

κkw04 1.075 · 10−5 [1/K3]

κτw1 1.1109 · 10−10 [s]

κτw2 −3.824 · 10−12 [s/K]

κτw3 6.938 · 10−14 [s/K2]

κτw4 −5.096 · 10−16 [s/K3]

cgrad 1.03 [−]

Table B.7: Scalar empirical constants.
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Symbol Value Units Description

ρw 1000 [kg/m3] density of water

ρa 1.20 [kg/m3] density of air

ρg 2.65 · 103 [kg/m3] density of soil particles in layer δg
ωd 2π/86400 [1/s] angular frequency of diurnal cycle

L 2.5 · 106 [J/kg] latent heat of vaporization

σ 5.57 · 10−8 [W/m2/K4] Stefan-Boltzmann constant

γ 0.65 [mb/K] psychrometric constant

ca 1004 [J/kg/K] specific heat of air at constant pressure

cw 4187 [J/kg/K] specific heat of water

K 0.4 [−] von Karman constant

T0 273.15 [K] reference temperature

kgd 4.67 [−] microw. dielectric constant of dry soil

kw∞ 4.9 [−] high frequency dielectric constant of water

g 9.81 [m/s2] acceleration due to gravity

clight 3 · 108 [m/s] speed of light

Table B.8: Physical constants
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